If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+8v+1=0
a = 2; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·2·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{14}}{2*2}=\frac{-8-2\sqrt{14}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{14}}{2*2}=\frac{-8+2\sqrt{14}}{4} $
| 3x+5=4x+1^2 | | 0.5t=0.6+0.1t | | v-4.3=25 | | 0.5t=0.6t+0.1t | | 7x–2=-2x+20 | | 5x-(2x+14)=2-(2x-8) | | 7x+1=2x-1^2 | | x–8.1=5.3 | | -4x+6=3x-7 | | 9x+4=30-2.5 | | X^3+12x^2-256=0 | | |m-8|-17=-3 | | 8x=4x^2+2x | | 4(7x-12)=8 | | 4x^2-48x-144x=0 | | 13x+36=-x^2 | | 3x+4=x–8 | | 4(7x-120=8 | | 6x=x=20 | | (x+2)/(x-4)=5 | | (3x-1)^4=20 | | 5(x+3)=2x+13 | | 5x+9=133 | | 8x^2+3=-4x | | -4(3t-4)+3t=7t-5 | | 5=4x+1^2+6 | | 5(2x+3)-2=23 | | 3x=x=10 | | k/4=14 | | 12z=6z-2+5z | | X+15x=95 | | 2(3x+1)^2=0 |